top of page

Overview:         Helped a client (Global Head of Conduct for a major investment bank) to                                                implement a Multi-Layer Perceptron Neural Network for a self-driving robot as                                  part of her MSc in Artificial Intelligence at the University of Essex

​

Objective:         Program the robot to guide itself to follow a wall on its left, and turn around corners

​

Ethics:              Client obtained permission from Course Director to obtain help and guidance

​

Results:            Client received a mark of 70% for the project; robot demonstration was successful,

                          and written report communicated that the client understood the underlying                                        material

​

                          Client also requested assistance with Mathematics preparation for the related                                    exams; she received marks of 75% for both Robotics and Neural Networks exams

​

Inputs:              Distance from left sonar sensor to wall, distance from front sonar sensor to wall


Outputs:            Left wheel speed, right wheel speed


Architecture:    2-4-2 Topology (2 input layer nodes, 4 hidden layer nodes, 2 output layer nodes) 
                          with tanh activation functions

​

Language:        C++ (Neural Network), Matlab (Data Cleaning)

​

Steps:               Adapted a vanilla network to track and output the error (average RMS error after                                each training example) to determine when to stop training (minimised validation                                error over epochs)

​

                          Also needed to perform data 'de-duplication' and splitting into training, validation                              and test sets, and normalisation / de-normalisation of data

​

                          We could have improved the smoothness by training over more epochs but the                                  client was more than satisfied.

bottom of page